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Abstract. An exact description is given of the long-distance behaviour of the one-
dimensional ¢-J model at t = J. We employ the Bethe amsaiz method and the
finite-size scaling technique in conformat field theory. The charge and spin degrees of
freedom are separated, and described by two independent ¢ = 1 conformal theories.
The critical exponents for the charge, spin, electron and superconducting correlation
functions are obtained for arbitrary band filling. We then make detailed comparison of
the ¢—J model with the repulsive Hubbard mode! with emphasis on their Luttinger liquid
properties. Analysing the electron filling dependence we observe the enhancement of
the superconducting correlations compared with the highly correlated Hubbard model.
The effect of the external magnetic field at and near half-Glling is aiso discussed.

1. Introduction

Almost ten years ago Haldane introduced the concept of Luttinger liquids that is
valid in understanding the low-energy behaviour of a large class of one-dimensional
(1D) conducting fermion systems [1,2}. The universal role of Fermi liquids in higher
dimensions is thus replaced by Luttinger liquids in one dimension. These two types
of quantum fluids have quite distinct features. Among others, in ordinary Fermi
liquid theory, well-defined propagation of electron quasiparticles implies a finite jump
discontinuity in the momentum distribution function at the Fermi momentum. This
should be contrasted with the power-law singularity near the Fermi point in Luttinger
liquids, which corresponds to the soliton-like excitation instead of the quasiparticle
excitation [3].

Recent studies of high-T, superconductivity have renewed interest in low-
dimensional electron systems. In superconducting compounds the quantum fluctu-
ation inherent in low dimensions is believed to play a crucial role in addition to the
strong correlation effect near the insulating phase [4]). T find an appropriate model
of high-T,, superconductors it is of particular importance to clarify if non-Fermi liquid
behaviour appears in the normal state of low-dimensional highly correlated systems.
A fundamental model Hamiltonian to study such correlated systems may be pro-
vided by the Hubbard model, or more simplified —J model. In one dimension
these systems are the simplest examples which have been expected to possess a non-
Fermi liquid nature. Very recently numerical computations to resoive this issue in
the highly correlated Hubbard chain have been done by Sorella et al [5,6], Imada
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and Hatsugai [7], and Ogata and Shiba [8]. Their works motivated us to find exact
correlation exponents in 1D correlated systems and to clarify their Luttinger liquid
nature.

In this paper we will describe exactly the long-distance behaviour of various cor-
relation functions in the 1D ¢-J model at ¢t = J. In addition to a full exposition of
the results announced in a previous communication [9] an analysis of the magnetic
field effect is also reported. The results will be compared in detail with the proper-
ties of the 1D Hubbard model whose correlation exponents have also been obtained
quite recently by Schulz [10], Kawakami and Yang [11], and Frahm and Korepin [12].
bosonization formulae for the Hubbard model are given by Affleck [13,14]. These
models have been known to be exactly solved by the Bethe ansatz for arbitrary elec-
tron filling [15,16]. In the Bethe ansatz approach it is a formidable task to deal with
correlation functions. However, recent developments in two-dimensional conformal
field theory have made it possible to calculate the correlation exponents {17]. The
point is that under a conformal mapping the scaling operators and the eigenstates of
the transfer matrix on a finite periodic strip have a one-to-one correspondence [18].
Consequently the critical exponents are obtained if one knows the gap due to the
finite-size effect in the spectrum of the Hamiltonian at criticality. On the other hand,
computation of the energy gap is the most tractable problem in the Bethe ansatz,
and hence we are able to compute exactly various correlation exponents based on the
finite-size scaling analysis [19-23])

Interacting 1D quantum systems may carry several low-energy excitations with
linear dispersion relations, but with different Fermi velocities. Hence the systems
will not be Lorentz invariant. When the motions of these excitations are decoupled,
however, we can still apply the conformal theory technique [22,23]. This is indeed the
case for the 1D ¢-J model and the Hubbard model, where the charge and spin degrees
of freedom are separated in the continuum limit, as will be seen. Consequently
the charge fluctuation is described by 2 ¢ = 1 conformal theory with continuously
varying exponents as functions of the electron filling. Here ¢ is the central charge
of the Virasoro algebra. The spin fluctuation belongs to the universality class of the
antiferromagnetic spin-3 Heisenberg chain irrespective of the electron filling. This
class is a well known ¢ = 1 SU(2) Kac-Moody theory.

In section 2 we recapitulate the Bethe ansatz solutions to the 1D t-J model at ¢t =
J and compute the finite-size corrections in the energy spectrum. The long-distance
properties of the charge, spin, electron and superconducting correlation functions for
arbitrary band filling are described in section 3. The magnetic field dependence of
correlation exponents at and near half-filling is also studied. In section 4 we first
review the properties of Luttinger liquids in the light of our result for the ¢~-J model,
and then make the comparison with the Hubbard model. The relationship between
the critical exponents and the bulk quantities is also discussed. The final section is
devoted to our conclusions. In appendices A and B we summarize some technical
details.

2. Finite-size scaling behaviour of the energy spectrum
The 1D t-J model consists of spin-1 electrons hopping around nearest-neighbour

lattice sites with the hopping matrix element —t < 0. We assume there is no double-
occupancy of every site, reflecting a large on-site Coulomb repulsion. Furthermore the
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motion of highly correlated electrons (or holes) is supposed to be strongly affected by
the spin fluctuation through the antiferromagnetic coupling J > 0. The Hamiltonian
is then given by [4]

H = —t Z:(c:a'c=+la + c:-f-la' w') + 2J E(S Ss—[nl 4n|n|+1)

_u'Zn,--—EHzi:(nﬂ—nﬂ) @1

where ¢;, (¢ =t or |) is the spin-o electron annihilation operator at the ith
site, S; = ¢! S,,.¢;,, with the spin-; matrix S, the number operator n;, =
el ¢, » m; = ny + ny, and p and H are the chemical potential and the ex-
ternai magnetlc ﬁeld respectively.

As is well known, this Hamiltonian is formally obtained by the canonical transfor-
mation from the Hubbard model, but with the limitation J < #. In (2.1), however,
one can regard 1 and J as free parameters. Therefore the model we shall treat here
(t = J) has an extremely large exchange coupling compared with the strong corre-
lation limit of the Hubbard model. The relevance of such a model to the high-T,
superconductivity was first demonstrated by Zhang and Rice [24]. Subsequently many
attempts have been made to clarify the nature of the ¢—J model, in particular laying
stress upon the competition between magnetism and superconductivity.

Schlottmann found that the 1D t—J model (2.1) can be solved by the Bethe ansatz
for the special case of ¢ = J [15]. At this integrable point the model is mapped
onto the muiticomponent quantum lattice gas whose exact solution was obtained by
Sutherland [25]). The diagonalization is performed in two steps. First we seek for
the wave function as a superposition of the plane waves characterized by the electron
momenta p; (j = 1 ~ N_). Here we consider a 1D lattice of even N sites with
N, electrons among which Af electrons are spin down. The complete integrability is
then ensured by the factorization of the multiparticle scattering matrix (Yang-Baxter
relation). On applying periodic boundary conditions we reduce the problem to the
ancillary one in spin space. This problem can be solved by the generalized Bethe
ansatz by introducing the spin rapidity A, (a = 1 ~ M) related to the internal
degrees of freedom. The resulting Bethe—Yang transcendental equations are written
in terms of the rapidities k; = {cot(p,/2) and A, [25,15]

ki +i/2 Mk —A ky - Agt+if2 .
(k —1/2) Hk —As—1/2 §=1eeen N,

e Ay = k; Ay =k +i/2 _

—Agti
HA —k __1/2 HA £ a=1,...,M.

—A'e—l

For convenience we will set t = J = 1 from this point on.

The set of rapidities {k;} contains complex k% of spin paired electrons (o =
1 ~ M), where ki are determined by real (down-) spin rapidities A, through
kT =A,+i/2 [15] At first sight the complex solutions k% seem to gcncratc the
charge excxtatlon gap as in the attractive Hubbard model. it turns out, however, that
they describe the massless charge excitation except for the half-filled band, where
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N, = N [26). We note that similar observation was first made in the singlet ground
state of the Anderson model for the Kondo problem [27]. The real solutions k,
describe the spin excitation at zero temperature. Other string solutions for excited
states are not necessary for the present investigation.

Substituting the complex solution into (2.2) and taking the logarithm we ob-

tain [15]

M
2Ntan~!(2k;) = 2n1; +2 Y tan~'(2(k; - Ag))  i=1,...,N,—2M

g=1
(2.3)
Ne—2M
2Ntan"Y(A,) =2mJ, +2 3 tan~'(2(A, —k;))
i=t
M
+2 ) tan~l(A, — Ag) a=1,...,M (2.4)
=1
where
I-=M-mod1 JQ=M+—M-mod1. (2.5)
4 2 2
The energy and the momentum are given by
N, N
E= —2jz=;cospj -~ uN, + H(M— T)
N -2M
: 1/2
= —2N.+2 el
¢ Jzz; k2 +1/4
d N
+2§Ag+1—ch+H(M——-2—) (2.6)
N. o ( Nez2M M
P=ij=_w( 3 rj+ZJu). @7
i=1 i=1 a=1
It is convenient to introduce
1 1 -
— -1 -1
z, n{k) = o (Qtan (2k) - ﬁﬂz_:than (2(k - Aﬂ))) (2.8)
1 g Nez2M
_— -1 - -1
z, n(A) = on (2tan (A) N E 2tan™(2(A — k;))
LM
- ;2tan—1(A_Aﬁ)) @9
=1
8z, n (k) 9z, n(A)
pun(k) = =50 pn(A)= —5E— 210)
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so that
I, J
zs,N(kj) = _]& zc,N(Acx) = 7\% . (2.11)

Inspecting (2.11) one finds that the real solutions {k,} and {A,} distribute over
the regions £ < B~ and & > B*, A < @~ and A > Qt, respectively. Corre-
spondingly the distributions of the quantum numbers /; and J,, become I < I~ and
I>rt, J<J and J > Jt, where

+ _ 1% e _ JE
Zn(BY)=F 2N (@)= (2.12)

and
It-I"=N-N It4+1-=2D
¢ + ° (2.13)
Jt—-J-=N-N, Jt+J-=2D,.

Here N, = N_— M is the number of up spins and D, (or D,) denotes the number
of particles which transfer from a Fermi level of the spinon (or holon) to the other
Fermi level.

2.1, Corrections to the ground-state energy

We now take the large-/NV limit while keeping the terms which scale as 1//N in the
energy spectrum [19]. First from (2.10) we get

M
pun(®) = 5= (TlB) = 7 S Teclle = Ay) e
A=t
1 N.-2M 1 M
b= 3= (TulM) = T TolA- k)= § 2 Tult=4g)) @19
i=1 B=1
where
T(o) =T = g Tl =gy Te@=0. @19

Using the Euler-Maclaurin formula

Z f( ) j(-(naﬂ/z)/N fo)da— 24N2 (f,(n2+ 1/2) P ______1_{3))

n1-1/2}/N
@17)
we obtain from (2.14) and (2.15)
Top(ra —af) Top(da—dp)
Pa,N(A )—— oA )+24N22(28 = +ﬁ _Lofle _ﬁ)
Wpﬁ,N(Q,g) 2WP,@,N(‘1,3)
-2/ a,s(A =~ Npgn(N)  a=es (2.18)

B=c,a
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where we have introduced the notation A, = A, A, = k, ¢ = Q%, ¢f = B%,
i,(z) =T, (=), &, (x) = T, (=) and the integral

+oo 95
L=l L2
+8 93 -0

The solution to (2.18) may be written as

— 1 FisQalg®)  Fra(Malg®)
where
1, dN o
a0l = 528,000 - 1 L, 5 Tesa = X)p5(¥1a¥) (220)
+ 4 dX AWs ]
FaOald®) = TopO0 =)= 1 [ GoTon0 - NfbNIc). @21
¥

Notice that p (A, lg*) in (2.20) are the rapidity distribution functions in the
thermodynamic timit N — oo with N /N = n_ and N,/N = n, being kept fixed.
In this limit the electron density =, and the magnetization M are obviously given by

ne= [ akp+2 [ arp ()

+s te

M=n -Ea=lf dkp, (k). 222)
2T =3, ke

For the ground state the rapidity distribution is symmetric, ¢& = +¢,. In the absence
of the external magnetic field the ground state turns out to be singlet, M = 0 [15].

To calculate the energy we first apply the formula (2.17) to (2.6). Then, using
(2.19) and (2.21), we have

- +y_ ®_ 1 20y _ da. +
B =Nelq™) 6N Za: 2?rpa(qa)( %a'(4a) %jfm;q, 2w£‘3(x)f’s°'()‘))
+O(N-2) 223)
where
() =Y L dAEL(N)p,(Meb) (224)
EN=-2+pn)- g + T, (A) E2(N) = =2(2+ @) + T,.(N). (2.25)

Since the second term in (2.23) is of order N~! we have replaced p,(A|gt) by
Pe(A) = limqi_*“pa(,\]qi) which is the solution to (2.20) with q§ being replaced

by £qp. Likewise f15(0,) =lims s, fEs(A,le%).
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Let us introduce the dressed energy functions
Ll = £ - 3 L, et )T -0 @

with the condition

€a(dalg®) = 0. (2:27)
We iterate (2.26) and take the derivative. The result is compared with the expression
obtained by inserting the iteration solution f¥ g Of (2.21) into (2.23). One finds

)= gree M| =)~ > Ly, 5800 e®

where €,(A) = limx_, ¢ €, (Algt). On the other hand, the Fermi velocities of the
low-lying excitations are determined from

Vo =

Trpa(g,) %) )

Therefore it can be seen that

-2), (2.30)

E=Ne,(¢*) - 53

Consequently we find that the ground-state energy scales as

= _ Ty 2
Ey = Neg— oo 6N+O(N) (2.31)

where the bulk energy density &, = £(¢*)[ 24, = e(%q).

2.2. Corrections due to the excitations

Our next task is to compute the energy gap £ — E, due to the elementary excitations.
There exist two types of excitations: the excitations which cause the change of the
symmetric Fermi level + B and £Q of the ground state to the asymmetric ones B¥
and Q%, thereby with large momentum transfer, and the particle-hole excitations
with small momentum transfer near the Fermi levels.

In order to calculate the contribution of the excitations with large momentum

+
transfer, it is convenient to convert the integrals f, _ into f:_" . This can be performed

by Fourier transform. The integral equation (2.20} for the?rapidity distribution then
turms out to be

pul¥e*) = 5meaN)+ 3 [ ST Kp(A= Mop(Viet) @23)
I s .



5990 N Kawakami and Sung-Kil Yang

where K, (z) = K,.(z) = T, (2), K, (z) = ~T.(x), K. () =0,and ¢,(x) =
K, (z), e (z) = 0. For the dressed energy (2.26) we obtain

+

' P '
QWO =@+ T [ oKV =X 239
B s
where €9(z) = H — K,,(z), €(z) =2+ u— H/2. The energy takes the form
H 22
E(tfb)=u—?+z _ dAel(Nea(Algt)- (234)
a Yo
The integrations of the rapidity distributions over the closed intervals yield
Q+ B+
/ dAp{A)=1-n, dkp,(k)=1~-n, (2.35)
Q- B~

which are the number of holes and the number of ‘holes’ with respect to up spins,
respectively. Notice that these are quite consistent with (2.13).

We turn now to the derivation of the explicit form of £(¢*). We first minimize
e(g*) with respect to the electron number and the magnetization. This condition
is equivalent to demanding 9=(q*)/8¢E = 0, which is realized by virtue of the
condition (2.27) for the dressed energy; ¢, (g% |q*) = 0. See appendix A. Let us next
expand £(g*) about the ground-state energy density 5 = &(+q)

) =0+ 3 3 () eliat -+ (5 ) ehiaz + 08} @39

o

where the vertical bar stands for setting ¢ = +¢,. There is no cross derivative due
to (2.27). We now wish to express the variations dgt = ¢* F ¢, in terms of the
change of the numbers of electrons and up spins. The details of this calculation are
left to appendix A. The result reads

e(qt) — ey = % (i:*(z-l)fvz-l.r + D‘ZVZ‘D) + O(N-?) (2.37)
where V = diag(v,,v,). Here we have introduced the 2x 2 dressed charge matrix
Z [22,23,28] whose elements Z,; = §,4(qg) are given by the solutions to the
integral equations

L8]
W ETIEEY jq %gavmxﬂ,(x— Ag). (2.38)

o~ (2)

r=C,8
with nl being the ground-state value of n,,a = c,s. As pointed out in [28,29]

Ic _(Nc_ngN)
I= (1) = (—-(N, — mON) (239
nO

¢, n? and N should meet certain commensuration conditions to be consistent with

Here
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the conformal limit. I, and I, are then non-negative integers, implying that we are
counting the hole number and the number of ‘holes’ with respect to the up spins,
respectively.

It is straightforward to include the particle-hole excitations. Their contributions
are specified by the set of non-negative integers N¥ and NZ. The final expression
for the energy gap is thus obtained as

- _ 2ny, 2xv, _
E-E, = N z,+ N z, + O(N™9) (2.40)
z,0 -2\
e = (W) +(Z..D. + Z,CD8)2+N;' +N;

(2.41)

Zyelo = Zeols 2 2 + -
T (W) +(Z.,Dc+ 2,,D,) + N} + Ny .

The momentum takes the form

27 -
P— Py = (27 —2kp; — 2kp ) D + (27~ 2kp) D, + 7 agc:,(I“D“ +NF-NZ)

{2.42)

where F; is the ground-state momentum and the Fermi momentum kg, (kp) for
the up- (down}-spin electrons is given by

Equation (2.42) is easily checked if one notes to rewrite (2.7) as
= %(ZIJ‘ + ZJa) + (I*,J* independent term)  (2.44)

where the sums are taken over [; € [I~,I*] and J, € [J~,J*].

This completes our derivation of the finite-size corrections in the energy spectrum.
Now, conformal invariance of 1D quantum critical systems dictates that the ground-
state energy scales like [30]

we —

By = eoN ~ =v+ O(N Y (2.45)
where v is the Fermi velocity and ¢ is the central charge of the Virasoro algebra.
The energy gaps of the excited states are related to the scaling dimensions x,, of the
scaling operators of the theory [18]

E, - Ey= 2”7%,, +O(N1). (2.46)
Thus our expressions (2.31) and (2.40) indicate that the critical behaviour of the {-J
model is described by two independent ¢ = 1 conformal theories. They are associated
with the massless excitations, the holon and spinon, which are characterized by the
Fermi velocities v, and v,.
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3. Correlation functions

One of the remarkable observations in two-dimensional conformal field theory is that
the critical exponents of the scaling operators are read off from the energy gaps as
described in (2.46). To write down explicitly the correlation functions at long distance
let us rewrite (2.40) and (2.42) as

B(I,D) - By="7 3 v,(A} +45)+ O(N™) 1)

a=c,s

P(I,D) — Py = (27— 2kp; — 2kp)) D, + (27 - 2k,) D, + -2-}\’{- S (A% -47)

a=c,s

(3.2)

where AZ are the left and right conformal weights in the sector o; & = ¢ (holon),
o = s (spinon). Here =, = A} 4+ A7 and we have

1 z,1. -Z.,1,
AF(I,D) =3 (chDc +Z,.D, £ —amset

1 z, I, -Z,.I
+ [ —Le s 3c ¢
AE(I,D) =3 (zc,,pc +2,,D, + 2=t

)2 FNE (3

)2 +NZ. (B4

The two-point correlation functions of the scaling ficlds ¢, (z,t) with conformal
weights A¥ then take the form

{pas(z,1)$2(0,0)) = G(AE(I, D)jz, 1)
exp(i(2# — 2kp, — 2kp| ) D x) exp(i(27 — 2kp )} D, z)

: s - T = . (3.5)
(z —iv,1)287 (z 4 iv,1)287 (2 — iv,1)?85 (2 + iv,1)?8s
We consider the following correlation functions.
(i) Electron correlator
G, (z,1) = {c! (z,1)c,(0,0)) o=for] . (3.6)
(ii) Charge density correlator
N(z,t) = {n(z,t)n(0,0)} n(z,1) = niz, 1) + n(2,1). 3.7

(iii) Spin correlator
x(z,t) = {5,(=,1)5,(0,0)} 5.(z,1) = §(ni(z,t) — ny(z,1)). (3.8)
(iv) Singlet and triplet pair superconducting correlators

P,(z,t) = (cl(z + 1,1)e| (2, 1)¢;(1,0)¢,(0,0))

(3.9)
Pz, 1) = (ch(z + 1, t)cl(z, 1)e;(1,0)¢;(0,0)) .
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Generically the field operators we have introduced will renormalize to a certain linear
combination of the scaling operators at long distance. The correlation functions (3.6)-
{3.9) are thus expressed as

Y A(I,D,NE)G(AY(I, D)lz,t) (3.10)

where A(I,D,N*) are constant coefficients and we have neglected possible loga-
rithmic corrections.

In order to determine the scaling dimensions we now have to assign the quantum
numbers (I,D,N?) to the field operators, as has been done for the Hubbard
mode [12]. Notice that these quantum numbers are subject to the restrictions

D

. = -{f-—g—{é-mod 1 D, == mod1 (3.11)

which can be checked from (2.5). Upon inspecting the explicit form of the field
operators in (3.6)-(3.9} one finds the assighment

Gy(z,t): (I, =1,1,=1,D,€Z,D,€Z+})
G(z,t): (I,=1,I,=0,D, €Z+3,D,€Z+ 1)
N(z,t):(I,=0,I,=0,D,€Z,D, eZ)

x(z,t): (I, =0,I,=0,D,€Z,D, € Z)
P(z,t):(I,=2,I,=1,D,€Z+1%,D, €Z)
Plz,t):(I,=2,I, =2,D €Z, D, eZ).

(3.12)

In the following we first study the correlation functions for zero magnetic field and
then the effect of the external magnetic field at and near half-filling is discussed.

3.1, Zero magnetic field

It is readily seen that B — +oo for zero magnetic field. Using the Fourier transform
technique we obtain the simple form of the dressed charge matrix Z

(ﬁ g) - (effg;2 1/(1/5) (3.13)

2C
where Z_, = 1/+/2 is derived with the aid of the Wiener—-Hopf method [28]. Here
£.(A) is the solution to the equation

o ,
E(A)=1+ -[Q dA' R(A - A")E(A') (3.14)

with the kernel being

dw exp(—iwz)

R(=z) = oo 2™ 1+ exp|w|’

(3.15)
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The conformal weights (3.3) and (3.4) are reduced to

x _if I DY | s
A¥(I,D) = 2(%@) * £(QUD, + >) + N
(3.16)

1 I 2
A¥I,D) = Z(;_,-—;:;:D,) + N%.

Let us first consider the charge density correlation function. From (3.12) we write
down the asymptotic form of the equal-time correlator

N(r,0) ~ constant + Ayr~2 4+ A,r™%" cos(2kpr) + Ar~ %< cos(dkypr) (3.17)

where kpq = kpy = kp since M = 0 for zero field. The 4kp piece arises
from the excitation of (1,,1,,D,,D,) = (0,0,%1,0), while the 2k, piece from
(1,,1,,D,,D,}=(0,0,+1,F1) and (C,0,0,+£1). The non-oscillating part is due
to the lowest particle-hole excitation. We thus find

a, = 26,(Q) o, =1+ a,/4. (3.18)

Notice that both the holon and spinon excitations are responsible for the 2kp os-
cillation part. On the other hand the 4kp piece is dominated by the holon exci-
tation alone. The same observation holds for the Hubbard model [10-12] and the
Tomonaga-Luttinger model [3]. The spin correlation function x(r,0) has the same
form as (3.17) except that the 4k, part is absent. The critical exponent for the 2kg
part is equal to «, of the charge density correlation. '

4 T

14 F E O
£

1.2

1 L e 2 = —
0 0.25 0.5 0 0.25 0.5

v v
Figure 1. The dressed charge £.(Q) of the holon as  Figure 2. The charge density 4kp exponent o as

a function of the clectron concentration » (v =% a function of ».
for half-filling).

The dressed charge £,(Q) of the holon is shown in figure 1, where v = n2/2
and v = 1 corresponds to the half-filled band. The 4ky exponent ¢, then behaves
as depicted in figure 2. Near half-filling we obtain o, ~ 2 + 8(1 — v/) as shown
in appendix B. Note that in the low-density limit «, = 4, ie. the value for the
non-interacting model,

The long-distance behaviour of the electron correlation function is governed by
the excitation specified by (1., I,,D,, D,) = (1,1,0,+%). We thus obtain

cY a2

G(r,0) ~ r77 cos(kpr) n=(a,+4)*/(16c,). (3.19)
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G(r,0) follows the same behaviour, but with the excitation (1,0,%%,F3). Conse-
quently the momentum distribution function close to kp has the form

{n;) = (n;,} — constant |k — kp|®sgn(k — ky) (3.20)
which is the typical power-faw singularity of the Luttinger liquid [3] and we find
f=n-—1=(a,~-4)°/(16a,). (3.21)

From figure 3 we see that as v deviates from half-filling # decreases monotonically
from } to zero, and hence the momentum distribution in the low-density regime
exhibits an abrupt change around k.

4 ' Ji8 3 '
o.1f 8
2.5t
0.05} < Be 8,
2
0 0.25 0.5 0 0.25 0.5

v v

Figure 3. The exponent # for the momentum dis-  Figure 4. The superconducting correlation expo-
tribution as 3 function of ». nents as a function of v, B; and B¢ are for the
singlet and triplet pair, respectively.

We now turn to the superconducting correlation functions. The excitations rele-
vant to the singlet and triplet pair correlations are specified by (/,.,1,,D,,D,) =
(2,1,£4,0) and (2,2,0,0), respectively. We then obtain for the singlet pair

P,(r,0) ~ r~Ps cos(2kpr) B, =4fa, +a f4. (3.22)
The triplet pair has the leading uniform term
P(r,0) ~r A B.=1+4/c,. (3.23)

Notice that the singlet pair correlation also has the uniform piece with the same
exponent ;. The exponents 5, and B, are plotted in figure 4, from which we
observe that the superconducting correlations get more enhanced as holes are doped
into the half-filled band [9,31]. It is interesting to notice that even in the ¢—J model
the superconducting correlations never overwhelm the spin correlation since 3, and
3, are always larger than o, for arbitrary electron filling.

3.2. Magnetic field dependence

Let us investigate how the correlation exponents behave when we turn on the external
magnetic ficld. For simplicity we consider two typical cases: just at half-filling and near
half-filling, on the basis of which we will be able to clarify the essential properties of
the field dependence. At half-filling there is no massiess excitation associated with the
charge fluctuation since the strong correlation effect opens the very large Hubbard
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Figure 5. The 2kp exponent o, in the spin correlator as a function of H at half-illing.

gap. The spin excitation remains massless, which can be described by the ¢ = 1
SU(2) Kac-Moody theory. The long-distance behaviour of the spin correlator is thus
equivalent to that for the antiferromagnetic Heisenberg model in [32]

x(r,0) ~ M? 4 Byr~2 4 B,r= " cos(2kp 1) (3.24)

where M is the magnetization. We plot in figure 5 the magnetic field dependence of
the 2kp spin exponent o, = 2£,(B)?, where £,(B) is given in (3.26) below.

In the metallic phase away from half-filling, the holon becomes massless as in zero
field. An essential difference from zero-field case is that the holon is no longer treated
as a spinless hole because it acquires the effective spin induced by the magnetic field.
Similarly the spinon may get electrically charged.

These effective spin and charge are computed by creating the holon and spinon
excitations in magnetic fields [33]. We then observe that they are nothing but the
elements of the dressed charge matrix introduced in section 2. ‘The physical meaning
of each element is that Z__ and (::,- - Z,.) are the effective charge and spin of the
holon, and Z,, and Z,, are the effective spin and charge of the spinon. Approaching
half-filling (Q — 0), the effective charge of the holon is independent of field and
becomes unity. The spinon is not charged even in the metallic phase, ie. Z_,, = 0.
Furthermore the field dependence of the effective spin of the spinon is given by that
for the Heisenberg model (corresponding to half-filling}. The dressed charge matrix
thus turns out to be

(5= 2)= (4t oy eim) -

where £,( B) is equal to the dressed charge (or effective spin) for the spin-} Heisen-
berg chain obeying

G =g+ [ Ak Rk K)E, (k) (3:26)
2 Jwizs
with the kernel R(z) given in (3.15) and the effective spin of the holon is

s5(B) = = / dksech (7k)E, (k) . (3.27)
[T
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For comparison let us quote the zero-field dressed charge matrix near half-filing

(G uia)

It is not difficult to verify (3.25) from (2.38) if one applies Fourier transform. The
ficld dependence of £,(B) and s,(B) are depicted in figures 6 and 7, respectively.
We note in figures 5 and 6 that the weak-field behaviour of «, and £, exhibit the
logarithmic singularity whose origin is the same as for the spin susceptbility of the
Heisenberg chain [12,34].

(%]

0.5 ——
% o4l

1.0
0.3}F .

& 0.
0.2+ 1

0.8
0.1 -

0.7 |
0 2 g 4 0 2 5 4

Flgure 6. The dressed charge €,(B) of the spinon  Figure 7. The effective spin s,(B) of the holon
as a function of the external magnetic field H at  as a function of H near half-filling.
and near half-filling.

We next discuss the field dependence of critical exponents close to half-filling. The
exponent of the 4kp(= 2kp; + 2kp, ) oscillation piece in the charge correlator takes
the value «, = 2 irrespective of magnetic fields owing to the fact that it is controiled
by charge excitation alone. Since the charge density operator n(r) = n.(r) + n(r)
the 2k, part splits into two picces with the momentum 2k and 2k g, the exponents
of which are given by or,, = 222, 4+2(1-Z,.)? and e,y = 222,4+2Z2,, respectively.
Note that these exponents have the magnetic-field dependence only through the

effective spins of the spinon and holon. The values of (a,, «,,) are increased from
3.3) to (4,2) as the field increases.
The singlet pairing exponent has the form

5 1(1-22,_\°
SR )

while the triplet one reads

2
ﬁt=2+2(1_z’c) . (3.30)
Zﬂa

With the increase of the magnetic field, the values of (3,, 5, ) are monotonically in-
creased from (2,3) to (3,4), respectively. Therefore the superconducting correlation
is suppressed in the presence of the magnetic field, as might be expected.
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The Luttinger anomaly exponent for the momentum distribution is given by

1 1-Z,,
5[ —-14 2% + 22, + (Z—)i] for kpy

&8

91=

(331)
1 Z,.\*

el=§[-1+(1—_z,c)2+zf,+(—Eﬁ)] for ki, -

8

Both of the exponents &, , increase up to § with the increase of magnetic fields. The
momentum distribution around the Ferrm momentum is therefore smoothed by the
magnetic ficld.

We mention that Ogata et ol analysed numerical data on the magnetic field
dependence in the U -+ oo limit of the Hubbard model [35] comparing with the
analytic result obtained by Frahm and Korepin {12]. Our present results for the
magnetic field effect in the i-J model are essentially the same as theirs in the metallic
system very close to half-filling. It is worth noting that in this regime the effective
spin of the holon defined here is nothing but the magnetization M (2.22) of the
system. The magnetization in this limit is of course equal to that in the Heisenberg
mode] calculated by Griffiths [34]. We point out, however, that this relation holds
only for highly correlated systems. In generic cases they are not equivalent. This will
be seen explicitly in subsection 4.1, where the effect of the finite Coulomb interaction
is discussed using the Hubbard model.

4. Luttinger liguid properties

According to Haldane, the idea of Luttinger liquids applies to the low-energy excita-
tions in a variety of 1D metallic systems [1,2]. His demonstration is mainly based on
the systems containing the one-component massless excitation, such as the Heisen-
berg model, the bose gas model etc. The low-energy spectrum of Luttinger liquids
contajns the three spectral parameters, vg, v; and v,. These are all velocities asso-
ciated with the excitations of particle-hole pairs (vg), of the 2k, momentum transfer
(v;), and of the particlc number change (v,y). Here vg is the usual sound velocity.
The crucial point is that these velocities are not mutually independent but connected
through the universal relation vy = (v;v,)'/% Hence one can write

v; = exp(2¥)vp vy = exp(—2¢)vp 4.1)

where the parameter exp(2+) is non-universal and depends on the details of the
interactions of underlying microscopic models, All the correlation exponents are
essentially determined by this parameter. In short, what Haldane claims is that the
low-energy massless excitations in 1D metallic systems are all solved by the procedure
of bosonization.

In the ¢-J model, as we have seen, there exist two massless degrees of freedom,
the holon and spinon. These excitations are decoupled and described by two inde-
pendent ¢ = 1 conformai theories, i.e. Gaussian theories. Thus the low-energy action
reads

27
S= j at [ dz8,4,0,4, (42)

G_C -}
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where free boson fields are periodic ¢, (¢, ) = ¢,(t,z+27)+27x N R, with N, €
Z/2. The conformal weights (3.16) are characteristic of the Gaussian theory [36].
For the charge sector, therefore, the field pericdicity R, is parametrized as /7R, =
£.(@)71, ie. it depends continuously on the electron concentration. The spin sector
has the periodicity /7R, = 2Z,, = 1/v/2 for any electron density. This implies
that the spin sector is described by the level-1 SU(2) Kac-Moody theory just like the
spin-% antiferromagnetic Heisenberg chain [13]. It is also instructive to compare the
formula (3.1} for the energy gaps 2nv, (A} + AZ)/N with Haldane’s result (see
equation (6) of {2]). They are in fact equivalent under the identification e¥ = £,(Q)
(or e¥ = Z,, = 1/+/2) for the charge (or spin) sector. In the presence of the
magnetic field the quantity e¥ is generalized to the dressed charge matrix. Hence the
critical properties of the ¢-J model nicely fit in with the Luttinger liquid picture.

In comparison with the Fermi liquid theory the most striking feature of the
Luttinger liquid is the power-law singularity of the momentum distribution function
(3.20) near k = kp. This reflects the fact that the low-energy excitation is not of
the quasiparticle type, but of the collective type. The power-law anomaly (in view
of the Fermi liquid theory) was first discovered in the Tomonaga-Luttinger model
which essentially describes a weakly correlated electron system [37-39)]. As for highly
correlated systems this behaviour has been established only recently in the repulsive
Hubbard model [6, 8, 10-12,40). We now have shown that the same conclusion holds
for the i—J model,

In order for these systems to be classified as Luttinger liquids it has been crucial
that the charge and spin degrees of freedom are separated and described by two
independent ¢ = 1 conformal field theories. Universal scaling relations (3.18), (3.21)
and (3.23) are then valid for these metallic models. Each exponent, however, depends
on the non-universal microscopic property of the theory due to the existence of the
marginal operator. To clarify this point we would like to compare the —J model with
the repulsive Hubbard model in the next subsection.

4.1, Comparison with the Hubbard model

The 1D Hubbard chain describes a system of itinerant electrons feeling the on-site
Coulomb repulsion U/, The Hamiltonian takes the form

H=-t E(‘:Io-ciﬂa + "-'I+1a"-'£a) +U Znﬂ“u U>e. 43
5,0 3
As mentioned before, in the strong correlation limit (U 3 t) the model reduces to
the t-J model in the region J ~ 212/ U < 1.

The finite-size corrections in the Hubbard model have been analysed by Woy-
narovich [28]. For vanishing magnetic ficld the critical exponents «,, 8, 8, and 5,
are all expressed in terms of o, just through the same scaling relations (3.18) and
(3.21)-(3.23) as in the i—J model {10-12]. The 4k oscillation exponent «, is de-
termined through o, = 27,(Q)?, where the dressed charge function n.(k) of the
holon is the solution to the integral equation [11,12]

Q
neky =1+ [ i cos(k)Glsink - sin k')n.(K") “4)
_ -Q
with the kernel being

G(z) =

® dw exp(—iwz)
o0 27 1 +exp(Ulwl/(28)) °

(4.5)
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Figure 8. The charge density 4k exponent o as a function of v in the Hubbard
model.

Here the Fermi level Q is fixed by the electron concentration.

In figure 8 we show the exponent «,. Strong dependence of «, on the Coulomb
interaction as well as the electron filling is clearly observed. As U -~ oo, o, ap-
proaches 2 in agreement with the result for the spinless fermion. In the opposite
limit ' — 0, «, converges to 4 for the electron concentration 0 < v < %, which
is consistent with the result of the Tomonaga—Luttinger modei. It should be noticed
that o takes the value close to 2 near half-filling as long as the Coulomb inter-
action exists. Recall that at half-filling the Hubbard model is an insulator for all
U # 0, since the Umklapp interaction becomes relevant, thereby the charge excita-
tion possesses the gap. The gap formation strongly affects the properties of the charge
excitation so that the holon behaves like the spinless fermion, resulting in the o, = 2
near half-filling. From o, one can evaluate the Luttinger anomaly exponent 6 for
the momentum distribution and the superconducting correlation exponents through
(3.21)~(3.23) [10-12]. The results are plotted in figures 9 and 10.

Let us compare the present result for the ¢~J model with the large-U behaviour
of the Hubbard model. In the vicinity of the half-filled band the exponents of the {~J
model take the values expected in the strong correlation limit of the Hubbard model,
for instance «, = 2. This is because the exclusion of the double occupation gives
the most dominant effect near half-filling, which makes the motion of doped holes
behave like spinless fermions as in the Hubbard model. In the U — oo Hubbard
model, as v decreases from half-filling o, (= 2) stays constant, and hence & = % for
any filling [10-12,41]. On the other hand, in the {-J model the critical exponents
take the values for the non-interacting system such as ¢, (= 4) in the low-density
limit » - 0,

This non-interacting behaviour of the ¢—J model for v — 0 seems to be a bit
peculiar since the model is originally supposed to describe a highly correlated system.
Our result implies that the hole motion in the t-J model is not like spinless fermions
for large hole-doping, but is considerably influenced by the spin fluctuation through
the strong antiferromagnetic coupling J. We think that the large antiferromagnetic
coupling favours the antiparallel-spin electron pairs to sit on the nearest-neighbour
sites, which renders the hole motion quite different from spinless particles. In the
low-density limit this configuration will be so dominant that the exclusion of the
double occupancy becomes less important.

Turning to the superconducting correlations we see that the large spin coupling
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Figure 9. The exponent # for the momentum dis-  Figure 10. The superconducting correlation expo-

tribution zs a functior of v in the Hubbard model.  nents as a function of » in the Hubbard model. 8
and B, are for the singlet and triplet pair, respec-
tively.

as well as the hole doping in the {-J model play a conspicuous role to enhance the
superconducting correlation. This is not the case for the strong correlation limit of the
Hubbard model. Thus the ¢~J model tends to stabilize the superconducting state. In
spite of this fact, however, the spin correlation always dominates the superconducting
correlations for arbitrary electron filling, as pointed out in section 3.

&y

Uit=4

1 L 1 L
1] 1 2
© o Hft
Figure 11. The 2ky exponent o, in the spin correlator as a function of H in the
Hubbard model at half-filling.

Finally we discuss the magnetic field dependence. In [11,12] the exponent o, for
the 2k, oscillation piece in the spin correlator just at half-filling has been expressed
as o, = 2n,(B)?, where n,(B) is the dressed charge explained below. We present
the field dependence of «, in figure 11. In the vicinity of the half-filled band, the
dressed charge matrices for zero and for non-zero field take the same form as (3.25)
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and (3.28). The dressed charge function (or effective spin) 5, of the spinon satisfies
the integral equation (3.26) but with the kernel replaced by G(z) defined in (4.5).
The effective spin #,( B) of the spinon is plotted in figure 12 for several values of
U/t. We also depict the effective spin s, of the holon in figure 13.

0.5 T .
04t 1
. s
03} 8 -
02| -
o1k tit=2
- . . U L L L 2
1 A/t

Figure 12. The dressed charge (or effective spin)  Figure £3. The effective spin sy(B) of the holon

n,(B) of the spinon as a function of H in the & a function of H in the Hubbard model near

Hubbard model at and near half-flling. half-Glling (In this figure U/t = 2 should read
Ujt=4).

All the critical exponents are obtained in terms of the effective spins of the spinon
and holon. We shall refrain from giving explicit formulae since one can readily check
the field dependence of exponents using the formulae given in subsection 3.2.

Let us conclude this section by making a brief comment on the effective spin s,
of the holon. For U/t » 1 the s, curve closely follows the magnetization curve of
the Heisenberg chain, as observed in the ¢t-J model. This observation is understood
in the following way: In the strongly correlated regime near half-filling the spin state
is almost degenerate, and hence all the band electrons contribute equally to the
magnetization under non-zero field. Therefore making a hole in the ground-state
A-distribution amounts to losing magnetization per lattice site. This in turn gives rise
to the effective spin of the holon. Notice, however, that such a simple sitvation no
longer holds as U /¢ becomes small. Therefore it should be realized that the effective
spin of the holon has a different field dependence from the magnetization generically.

4.2. Relations to bulk quantities

Another interesting aspect of the Luttinger liquids is that the critical exponents can
be expressed in terms of the bulk quantities. This kind of relation between the
bulk quantity and the dressed charge was first noticed in [1,32]. We consider the
three typical bulk quantities, the spin susceptibility x,, the compressibility x. and the
specific heat coefficient «, in the t-J model.

As shown in appendix B, the compressibility and the spin susceptibility are ob-
tained as

Xe = £€(QY/(7v,)

x, ={gnp)2 (wv,) €, =1/VZ. (46
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The low-temperature expansion of the free energy gives

vz _"E(_l- + i) @7

3\v, v,
which corresponds to two ¢ = 1 conformal theories [30]. We thus find

o, = 4%./(27 - X,) (48)

where we have renormalized the bulk quantities so that ¥ = %, = %, = 1 in the
non-interacting limit. Note that this formula is also valid for the Hubbard model [10~
12]. In the band bottom all these bulk quantities exhibit the divergent behaviour due
to the dispersion relation in 1D electron systems. Approaching half-filling x, remains
finite (a constant value of the Heisenberg model), while x, diverges as

8(1n2)
= 3m((3) 2

due to the diverging density of states (see appendix B) [42], where { is the Riemann
zeta Eunction. Since v is also divergent like (1 — »)~! we have a, — 2%./¥ for
V= 5.

Lgt us next discuss an important role played by boundary conditions. Imposing
twisted boundary conditions on the Bethe wavefunction does not ruin the exact inte-
grability by virtue of the U(1) symmetry of the system. Shastry and Sutherland then
noticed that this was an efficient way to evaluate the effective current-cartying mass
(transport mass) [43]. Under twisted boundary conditions with the twisting phase ¢

the shift of the ground-state energy from the periodic case (¢=0) is

Eo(¢) - Eo(0) = D¢/ N + 0O(¢"). (4.10)

The interesting point is that the charge stiffness D, is directly related to the DC part
of the conductivity o(w)

a5 =) (4.9)

27e?

13

For free electrons the coeflicient of §(fw) is proportional to m~! with m being the
electron mass. Therefore it is legitimate to define the effective mass m* through
m* /m o« DZ! [43). In view of conformal theories the energy shift due to twisted
boundary conditions by ¢ is attributed to the excitation I, = I, = D, = 0 and
D, = ¢/27 [12]. From (3.1), (3.16) and (4.6)-(4.8) one can easily express the
enhancement factor of the current-carrying mass in terms of the bulk quantities [44]

m*fm = (23 - %)}/ %, . {4.12)

Then, for instance, in the t—J model near half-filling the effective mass is extremely
enhanced as

Re o(w) = D, 6(hw) . (4.11)

which corresponds to the fact that the system approaches the insulating phase.

To conclude this section we emphasize that formulae (4.8) and (4.12) are valid for
any 1D correlated electron system, and hence characterize the universal properties of
Luttinger liguids.

(4.13)
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5. Conclusions

In this paper the long-distance properties of the ¢~J model at ¢t = J for arbitrary
electron filling have been studied using the Bethe ansaiz solution and the finite-size
scaling method in conformal theory. The resuilts are compared with the repulsive
Hubbard model in detail. Starting with microscopic models we have shown explicitly
that the electron behaviour in these highly correlated systems is characterized as the
Luttinger liquid. The separation of the charge and spin degrees of freedom is quite
essential. Consequently the charge sector is described by the Gaussian theory and
the spin sector by the ¢ = 1 SU(2) current algebra. The dressed charge matrix
introduced in the Bethe ansatz calculation provides us with the precise link between
the characteristic parameter of Luttinger liquids (ie. Gaussian field periodicity) and
the microscopic parameters in the theory. Notice that this is the most difficult step in a
conventiona} bosonization approach. In conclusion we have presented the microscopic
foundation of the concept of Luttinger liquids 4 la Haldane on the basis of conformal
field theory and Bethe ansarz solutions.
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Appendix A

In this appendix we present our calculation of the finite-size corrections in section 2
in such a way that it can be applied to generic nested Bethe ansatz solutions. Let us
start with the Bethe ansaiz equations

i Ng
Npd(O)y=2mlf = 5 3" 6,508 = M) a=1,...,1 i=1,...,N,
f=1 k=1

(Al)

where N denotes the system size, N, is the number of ‘particles’ of the type
(=1,...,1) and p%()) are the bare momenta. The phase shifts ¢, g(A) are assumed
to obey ¢og(A) = dg,(2) = —P,s(—A). We consider the case in which the
quantum numbers I belong to the interval [I}, I7] so that

I} -I; =N, ID+1I;=2D,. (A2)
Define
1 L s
Zaw(A) = 500 (W) + 555 20 D dag(h = X) (A3)
£=1k=1
0z, n{A) Iz

pa,N(}‘) = H-é.A— za,N(Qﬁ) = 'Fa . (A4)



Luttinger liquid properties of highly correlated systems 6005

For N — cowith N, /N = v, and D_/N = §, being fixed, the rapidity distribution
functions satisfy

d)\’

pa(Alg) = 5-a, N+ 2 [ B ap 3= N0op1e) A9

where a, (A} = p%(A) and K,5(A)
limy_ o 2o, {(A)s we have

wg(A).  Then, for z, (X) =

a(A)——pa(mz j d"'m(x Mps(Nlg).  (AS)
.ﬂ

Let us first calculate

Y 8 N 8 [
Do _ G _ ) 7). A7
aq;. 3(]; (za(Qa) za(Qa)) aq; = d’\Pa(M ) (A7)

Introducing the dressed charge functions

d) )
o) = s+ T [ To60s IR 50N = 39) (a%)
we obtain
v,
@ = P,G(Qﬂ)zap (A9)

where the vertical bar is meant to put g5 = +q, and the {x[ dressed charge matrix

Zisgivenby Z,5 = &,5(qs)-
We next calculate

88, _ 8z,(qf) , 8z,(a))

o ool AlD)
39‘; 3‘1]; 99z (
" After some manipulations we get
A 1e7ty-1
ﬁ = palag)3(Z7);5 - (A11)

In a similar way one can show that

v,
o q}'

_ 96,
aq 3

360
dqz 7

v,
3q5

(A12)

We thus find in matrix notation that

pdgt iz-1 ZtN fdv
(reg-) = Cizr 2:) (ae) &5
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where (pdq*), = po(ga)deE (dv), = dv, and (d8), = ds,,.
We are now ready to express the ﬁmte-sme corrections in the energy

+
e=3" .,: dA €2 (M), (Met) (A14)

in terms of the matrix Z. Let us define the dressed energy functions

“e) =+ 3 [ PN NI =Y (A19)

with the condition
ca(gile®) = 0. (A16)
This condition ensures the stationary condition

0= 5o = Healadlet)oaladle)- (A1)

Another basic relations are

(o) ¢
Pala, )2\ 8t /.

where v, are the Fermi velocities.
Expanding <(q*) to second order in dg% = g F ¢, and substituting (A13) and
(A18) we finally obtain

= 27v, (A18)

e(q®) = e(+q) + 2«(%(du)'(2"1)'VZ'1du + (dé)‘ZVZ'dé) (A19)

where V3 = v,6,5. Note that d6, = D, /N and dv, = N, /N — 2 where v/] is
the value for the ground state. Hence e(¢*) — €(%q) is of order N~2,

Appendix B

We express the compressibility x, = 8n2/3u in terms of the dressed charge £,(Q)
in (3.14). First notice the chain rule
ong _ 9n:0Q
u ~ 8Q 8up

(B1)

For zero magnetic field (B — +oo) the rapidity distribution in the ground state
satisfies

Q
ph) = R+ [ AR = Ao () (B2)



Luttinger liquid properties of highly correlated systems 6007

With the aid of an auxiliary function F'(A|A’) obeying
Q
F(AIA) = R(A - AY) + f AV R(A — v) F(]A") 83)
-Q
we find from (3.14) and (B2) that

Q
£(A) =1+ f_ JRACUOLIY

9p.(A) (B4
e = P QUF(AIQ) + F(AI- Q).
It is now straightforward to shdw from (2.35) that
onl _
The dressed energy function (2.33) for zero field obeys
G
. (A)=24p~2rR(A) + / dA'R(A —~ A)e (AD). (B6)
-

This function is subject to the condition ¢, (£Q) = 0, according to which we obtain
£.(Q) = —(8Q/8u)eL(Q). Using (B5) and (2.29) we thus verify the relation for
X, in (4.6). The expression for the spin susceptibility x, = M /G H in (4.6) can be
derived in a similar way by examining the asymptotic behaviour for B » 1.

Let us now check (4.9). Approaching half-filling we have Q — 0, and hence from
(2.35)

nd > 1-2Qp,(0). (B7)
Equation (B2) yields p{0) ~ R(0). Thus Q ~ (1 — nl)/(2R(0)). The dressed
charge behaves as £,(Q) =~ 1+ (1 — n?). Similarly it is seen from (B6) that €,(Q) =~
—w(1— nl)R"(0)/R(0). After all this we get

~ 2 ROP
Xe = "7 RH{0)

(1-nd-1, (B8)

Inserting R(0) = (1/#)In2, R"(0) = —(3/27)¢(3) with { being the Riemann
zeta function, and » = n?/2 we obtain (4.9) in the text.
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