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Luttinger liquid properties of highly correlated electron 
systems in one dimension 

Nono Kawakami and Sung-Kil Yangt 
Yukawa Institute for " z t i c a l  Physiq Kyoto Uniwsily, Kyoto 606, Japan 

ReceNed 20 August 1990, in final tom 28 January 1991 

Abstmcl An cxact description is given of the longdistance behaviour of the one- 
dimensional 1-J model at t = J.  We employ the Bethe m n Q  method and the 
finite-sue scaling technique in conformal field theory. m e  charge and spin d g R e s  of 
[reedom are separated. and desrribed by two independent c = 1 conformal theories. 
The critical exponenu for the charge, spin. elecmn and superconducting wrrelation 
functions are obtained tor arbitrary band filling. We then make detailed comparison of 
the t-J model with the repulsive Hubbad model with emphasis on their Luttinger liquid 
properties Analysing the electron filling dependence we observe Ihe enhancement of 
the superconducting correlations compared with the highly correlated Hubbard model. 
The eKeU of the external magnetic field at and near half-filling is also discussed. 

1. Introduction 

Almost ten years ago Haldane introduced the concept of Luttinger liquids that is 
valid in understanding the low-energy behaviour of a large class of onedimensional 
(1D) conducting fermion systems [1,2]. The universal role of Fermi liquids in higher 
dimensions is thus replaced by Luttinger liquids in one dimension. These two type8 
of quantum fluids have quite distinct features. Among others, in ordinary Fermi 
liquid theory, well-defined propagation of electron quasiparticles implies a finite jump 
discontinuity in the momentum distribution function at the Fermi momentum. This 
should be contrasted with the power-law singularity near the Fermi point in Luttinger 
liquids, which corresponds to the soliton-like excitation instead of the quasiparticle 
excitation [3]. 

Recent studies of high-", superconductivity have renewed interest in low- 
dimensional electron systems. In superconducting compounds the quantum fluctu- 
ation inherent in low dimensions is believed to play a crucial role in addition to the 
strong correlation effect near the insulating phase [4]. To find an appropriate model 
of high-T, superconductors it is of particular importance to clarify if non-Fermi liquid 
behaviour appears in the normal state of low-dimensional highly correlated systems. 
A fundamental model Hamiltonian to study such correlated systems may be pro- 
vided by the Hubbard model, or more simplified d - J  model. In one dimension 
these systems are the simplest examples which have been expected to possess a non- 
Fermi liquid nature. Very recently numerical computations to resolve this issue in 
the highly correlated Hubbard chain have been done by Sorella et a1 [5,6], Imada 
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and Hatsugai 17, and Ogata and Shiia 181. Their works motivated us to find exact 
correlation exponents in 1D correlated systems and to clarify their Luttinger liquid 
nature. 

In this paper we will describe exactly the longdistance behaviour of various cor- 
relation functions in the 1~ t-J model at t = J. In addition to a full exposition of 
the resulis aMOUnced in a previous communication [9] an analysis of the magnetic 
field effect is also reported. The results Wiu be compared in detail with the proper- 
ties of the ID Hubbard model whose correlation exponents have also been obtained 
quite recently by Schulz [lo], Kawakami and Yang 1111, and Frahm and Korepin 1121. 
bosonization formulae for the Hubbard model are given by M e c k  113,141. These 
models have been known to be exactly solved by the Bethe ansatz for arbitrary eleo 
tron filling [15,16]. In the Bethe amaa approach it is a formidable task to deal with 
correlation functions. However, recent developments in two-dimensional conformal 
field theory have made it possible to calculate the correlation exponents [lg. The 
point is chat under a conformal mapping the scaling operators and the eigenstates of 
the transfer matrix on a finite periodic strip have a oneto-one correspondence 1181. 
Consequently the critical exponents are obtained if one knows the gap due to the 
finite-size effect in the spectrum of the Hamiltonian at criticality. On the other hand, 
computation of the energy gap is the most tractable problem in the Bethe ansatz, 
and hence we are able to compute exactly various correlation exponents based on the 
finite-size scaling analysis [ 19-23]. 

Interacting ID quantum systems may carry several low-energy excitations with 
linear dispersion relations, but with different Fermi velocities. Hence the systems 
will not be Lorent? invariant. When the motions of these excitations are decoupled, 
however, we can still apply the conformal theory technique [22,23]. This is indeed the 
case for the ID t-J model and the Hubbard model, where the charge and spin degrees 
of freedom are separated in the continuum limit, as will be seen. Consequently 
the charge fluctuation is described by a c = 1 conformal theory with continuously 
varying exponents as functions of the electron filling. Here c is the central charge 
of the Vuasoro algebra. The spin fluctuation belongs to the universality class of the 
antiferromagnetic spin-$ Heisenberg chain irrespective of the electron filling. This 
class is a well known c = 1 SU(2) KaoMoody theory. 

In section 2 we recapitulate the Bethe am& solutions to the 1D t-J model at t = 
J and compute the finite-size corrections in the energy spectrum. The long-distance 
properties of the charge, spin, electron and superconducting correlation functions for 
arbitrary band filling are described in section 3. The magnetic field dependence of 
correlation exponents at and near half-filing is also studied. In section 4 we first 
review the properties of Luttinger liquids in the light of our result for the t-J model, 
and then make the comparison with the Hubbard model. The relationship between 
the critical exponents and the bulk quantities is also discussed. The final section is 
devoted to our conclusions. In appendices A and B we summarize some technical 
details. 

N Kawakami and Sung-Kil rang 

2. Finite-size scaling behnviour of the energy spectrum 

The 1D t-J model consists of spin-+ electrons bopping around nearest-neighbour 
lattice sites with the hopping matrix element -t < 0. We assume there is no double- 
occupancy of every site, reflecting a large on-site Coulomb repulsion. Furthermore the 
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motion of highly correlated electrons (or holes) is supposed to be strongly affected by 
the spin fluctuation through the antiferromagnetic coupling J > 0. The Hamiltonian 
is then given by [4] 

i,o i 

where cio ( U  = r  or 1) is the spin-U electron annihilation operator at the ith 
site, Si = cf,S,,.cio, with the spin-f matrix S, the number operator nio = 

ternal magnetic field, respectively. 
As is well known, this Hamiltonian is formally obtained by the canonical transfor- 

mation from the Hubbard model, but with the limitation J < t. In (Z.l), however, 
one can regard t and J as free parameters. Therefore the model we shall treat here 
(t = J) has an extremely large exchange coupling compared with the strong come 
lation limit of the Hubbard model. The relevance of such a model to the high-T, 
superconductivity was first demonstrated by Zhang and Rice 1241. Subsequently many 
attempts have been made to clarify the nature of the t-J model, in particular laying 
stress upon the competition between magnetism and superconductivity. 

Schlottmann found that the 1D 1-J model (2.1) can be solved by the Bethe ansatz 
for the special case of t = J [IS]. At this integrable point the model is mapped 
onto the multicomponent quantum lattice gas whose exact solution was obtained by 
Sutherland [U]. The diagonalization is performed in two steps First we seek for 
the wave function as a superposition of the plane waves characterized by the electron 
momenta p j  ( j  = 1 - N,) .  Here we consider a ID lattice of even N sites with 
N, electrons among which Af electrons are spin down. The complete integrability is 
then ensured by the factorization of the multiparticle scattering matrix (Yang-Baxter 
relation). On applying periodic boundary conditions we reduce the problem to the 
ancillary one in spin space. This problem can be solved by the generalized Bethe 
ansatz by introducing the spin rapidity A- (a = 1 - M) related to the internal 
degrees of freedom. The resulting BetheYang transcendental equations are written 
in terms of the rapidities kj = icot(pj/2) and AQ [25,15] 

ciscia t , ni = mil t nil .  and p and H are the chemical potential and the ex- 

k j + i / 2  k j - A h p + i / 2  
(k, - i /2 )  = U k. -Ahp- i /2  

Nc A- - kj + i/2 
U AQ - kj - i / 2  
j = 1  

j =  1, ..., Nc 
@=1 I 

(2.2) 
A Q - A h p + i  

B=l U A Q - A h p - i  
a =  1,  ..., M .  - _ -  

For convenience we will set t = J = 1 from this point on. 
The set of rapidities { k j }  contains complex kz of spin paired electrons (a = 

1 - M), where kz are determined by real (down-) spin rapidities AQ through 
k$ = A- f i /2 [15J At first sight the complex solutiom 6 seem to generate the 
charge excitation gap as in the attractive Hubbard model. It turns out, however, that 
they describe the massless charge excitation except for the half-filled band, where 
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N ,  = N [%I. We note that similar observation was first made in the singlet ground 
state of the Anderson model for the Kondo problem [27. The real solutions ki 
describe the spin excitation at zero temperature. Other suing solutiom for excited 
states are not necessary for the present investigation. 

Substituting the complex solution into (22) and taking the logarithm we ob- 

N Kawaknmi and Sung-IGl Ynng 

tain [ U] 
M 

2Ntan-'(2ki)  = 2nIj  + 2 tan-'(2(kj - A@)) j = 1,. . . , Nc - 2 M  

(2.3) 
N.-ZM 

ZNtan-'(A,) = ~ T J ,  + 2 tan-'(Z(A, - k i ) )  
i=l 

M 

@=I 

+2 tan-'(A, - A@) a = l ,  ..., M (2.4) 

Nc+ mod 1. (2.5) 

where 

2 J ,  = M I j  = - mod 1 
2 

The energy and the momentum are given by 

it is convenient to introduce 
M 

~ * , ~ ( k )  = -(Ztan-'(Zk) 1 - - x 2 t a n - ' ( 2 ( k - h g ) ) )  1 
@= 1 

2T N 

N,-2M 1 
27r 

. z ~ , N ( A )  = -(Ztan-'(A) - - c 2tan-'(2(A - k,)) 
N j = 1  

M 

@=1 

1 
N 

- - C Z t a n - ' ( A  - A 
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so that 

inspecting (2.11) one finds that the real solutions {ICj} and { A u }  distribute over 
the regions IC < B- and k > B+, A < Q- and A > Q+, respectively. Corre- 
spondingly the distributions of the quantum numbers Ij and J ,  become I < I -  and 
I > I t ,  J < J -  and J > J t ,  where 

(2.12) 

and 

I+ - I -  = N - N, I +  + I -  = 2 0 ,  
(2.13) 

Here N, = N, - M is the number of up spins and D, (or De) denotes the number 
of particles which transfer from a Fermi level of the spinon (or holon) to the other 
Fermi level. 

21. Correclwns to Ihe ground-state energy 
We now take the large-N limit while keeping the terms which scale as 1/N in the 
energy s p e c t "  [19]. F i t  from (2.10) we get 

J' - J -  = N - N, J +  + J -  = 20,.  

(2.14) 

where 

Using the Euler-Maclaurin formula 

(217) 

we obtain from (2.14) and (2.15) 
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where we have introduced the notation A, = A, A, = IC,  q$ = Q*, q: = B*, 
ii,(z) = Tcs(c) , ii.,(c) = T,,(+) and the integral 

N Kawakami and Sung-kil Yong 

The solution to (218) may be written as 

where 

Notice that p,(X,~q*) in (220) are the rapidity distribution functions in the 
thermodynamic limit N -+ 00 with N J N  = n, and N, /N  = n, being kept fixed. 
In this l i t  the electron density ne and the magnetization M are obviously given by 

(2.22) 

For the ground state the rapidity distribution is symmetric, q: = *q,. In the absence 
of the external magnetic field the ground state turns out to be singlet, M = 0 [15]. 

To calculate the energy we first apply the formula (217) to (2.6). Then, using 
(2.19) and (2.21). we have 
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Let us introduce the dressed energy functions 

with the condition 

.,(dl9*) = 0 

We iterate (2.26) and take the derivative. The result is compared with the expression 
obtained by inserting the iteration solution f$ of (221) into (2.23). One Ends 

where .,(A) = lim +-*qb ~ , ( A l q * ) .  On the other hand, the Fermi velocities of the 
qb 

low-lying excitations are determined from 

(2.29) 

Therefore it can be seen that 

Consequently we find that the ground-state energy scales as 

where the bulk energy density go = ~(8)l,$=*,, 

22 Corrections due to the milations 

Our next task is to compute the energy gap E- E,, due to the elemenmy excitations. 
There exist two types of excitations: the excitations which cause the change of the 
symmetric Fermi level f B  and &Q of the ground state to the asymmetric ones B* 
and Q*, thereby with large momentum transfer, and the particle-hole excitations 
with small momentum transfer near the Fermi levels. 

In order to calculate the contribution of the excitations with large momentum 
transfer, it is convenient to convert the integrals I,, into This can be performed 
by Fourier transform. The integral equation (2.20) for the rapidity distribution then 
turns out to be 

c(&q). 

t 

11, 
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where Kea(x)  = Kse(+)  = T,,(+), K J x )  = -Tcc(z), K,,(z) 
K,,(x), a,(x)  = 0. For the dressed energy (2.26) we obtain 

N Kawaknnti and Sung-IGI Yang 

0, and a,(z) = 

where e!(.) = If - K J z ) ,  E ! ( + )  = 2 + p - H / 2 .  The energy takes the form 

The integrations of the rapidity distributions over the closed intervals field 

dA p,(A) = 1 - n, L * d k p s ( k ) = l - n r  (2.35) 

which are the number of holes and the number of ‘holes’ with respect to up spins, 
respectively. Notice that these are quite consistent with (2.13). 

We tum now to the derivation of the explicit form of E ( @ ) .  We first minimize 
E ( $ )  with respect to the electron number and the magnetization. This condition 
is equivalent to demanding ae(qf)/8d = 0,  which is realized by virtue of the 
condition (227) for the dressed enerm, e,(q: In*) = 0. See appendix k Let us next 
expand e ( $ )  about the ground-state energy density E,, = E ( * q )  

where the vertical bar stands for setting q: = fq,. There is no cross derivative due 
to (2.27). We now wish to express the variations dq,f = q$ q, in terms of the 
change of the numbers of electrons and up spins. The details of this calculation are 
left to appendix k The result reads 

(2.37) 

where V = diag( v, , v ~ ) .  Here we have introduced the 2 x 2 dressed charge matrix 
Z [22,23,28] whose elemens Zap = Eog(q8) are given by the solutions to the 
integral equations 

Here 

-( N ,  - n ! N )  
D = ( E : )  I = ( : ) = (  - ( N a  - n : N )  ) (2.39) 

with n: being the ground-state value of n , , ~  = e,s. As pointed out in [28,29] 
n!, n: and N should meet certain commensuration conditions to be consistent with 
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the conformal limit. I,  and I ,  are then non-negative integers, implying that we are 
counting the hole number and the number of 'holes' with respect to the up spins, 
respectively. 

It is straightforward to include the particlehole excitations. Their contri%utions 
are specified by the set of non-negative integers N$ and N$.  The final expression 
for the energy gap is thus obtained as 

cc = (-7 2 d e t Z  + (Z,,D, + ZseDa)' + N$ + N; 
(2.41) 

The momentum takes the form 

277 P -  Po = ( 2 ~ - 2 k p T  - 2ICFl)D,+ (27r-2kFT)D8 + 7 ( I ,D,  + N: - Nc) 

(2.42) 

where Po is the ground-state momentum and the Fermi momentum ICFt (ICFl) for 
the up- (down)-spin electrons is given by 

,=c.* 

kF,(l) = $7r(nc * 2 M ) .  (243) 

Equation (242) is easily checked if one notes to rewrite (27) as 

+ ( I * ,  J* independent te rm)  (2.44) N 

where the sums are taken over I j  E [I-.It] and J ,  E [J-,Jt]. 
This completes our derivation of the finite-size corrections in the energy spectrum. 

Now, conformal invariance of ID quantum critical systems dictates that the ground- 
state energy scales like [30] 

(2.45) 

where v is the Fermi velocity and c is the central charge of the Viiasoro algebra. 
The energy gaps of the excited states are related to the scaling dimensions zn of the 
scaling operators of the theory [18] 

7TC Eo = EON - --v + O( A'-') 6 N  

Thus our expressions (2.31) and (2.40) indicate that the critical behaviour of the t-J 
model is described by two independent c = 1 conformal theories. They are associated 
with the massless excitations, the holon and spinon, which are characterized by the 
Fermi velocities vc and U*. 
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3. Correlation functions 

One of the remarkable observations in two-dimensional conformal field theory is that 

N Kawakami and Sung-Kil Yong 

the critical exponents of the scaling operators are read off from the energy gaps as 
d e s m i d  in (246). 'lb write down explicitly the correlation functions at long distance 
let us rewrite (2.40) and (242) as 

( 3 4  

where A$ are the left and right conformal weights in the sector a; a = c (holon), 
a = s (spinon). Here zp = A$+ A i  and we have 

The two-point correlation functions of the scaling fields q4A+(z,t) with conformal 
weights A* then take the form 

($'Ai(z, t)+a+(o,O)) E G(A*(l,  D)lz, t )  

We consider the following correlation functions. 
(i) Electron correlator 

G,,(z,t) = (c~(z,t)co(O,O)) U =t or 1 . 
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Generically the field operators we have introduced will renormali  to a certain linear 
combination of the scaling operators at long distance. The correlation functions (3.6)- 
(3.9) are thus expressed as 

CA(Z,D,N*)G(A*(l,D)lz,t)  (3.10) 

where A ( I , D , N * )  are constant coefficients and we have neglected possible loga- 
rithmic corrections. 

In order to determine the scaling dimensions we now have to assign the quantum 
numbers ( I , D , N * )  to the field operators, as has been done for the Hubbard 
mode [12]. Notice that these quantum numbers are subject to the restrictions 

Dc = C D , = - m o d l  I ,  (3.11) 

which can be checked from (U). Upon inspecting the explicit form of the field 
operators in (3.6)-(3.9) one finds the assignment 

'''mod1 2 2 

Gt(z, i) : (I, = 1, I .  = 1, D,  E Z, D, E 72 + 4) 
Gl(z , t )  : ( I ,  = 1,I, = 0 ,  D,  € E +  i , D s  E Z +  i) 

(3.12) ~ ( l , t )  : ( r ,  = 0 ,  I .  = 0,  D,  E z, D, E z) 
x(z,t) : (r,  = 0 ,  I ,  = 0, D,  E z, D, E z) 
~ , ( z , t ) :  ( r ,  = 2 ,1 ,  = I ,  D, E z+ 4 , ~ ~  E Z )  
P t ( z , t )  : ( I ,  = 2,I*  = 2 , D ,  EZ,D,  E Z). 

In the following we first study the correlation functions for zero magnetic field and 
then the effect of the external magnetic field at and near half-filling is discussed. 

3.1. Zero magnetic fieki 

It is readily seen that B -+ +CO for zero magnetic field. Using the Fourier transform 
technique we obtain the simple form of the dressed charge matrix 2 

(3.13) 

where Z,, = 1/& is derived with the aid of the Wiener-Hopf method [B]. Here 
f J A )  is the solution to the equation 

,O 

with the kernel being 

(3.14) 

(3.15) 
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The conformal weights (3.3) and (3.4) are reduced to 

N kbwahrni and Sung-Kil Yang 

Let EIS first consider the charge density correlation function. From (3.12) we write 
down the asymptotic form of the equal-time correlator 

N ( r , O )  - constant +A,r-' + A2rwa# cos(2kFr) + A4r-aecos(4kFr) (3.17) 

where k,, = k,, z kF since M = 0 for zero field. The 4k, piece arises 
from the excitation of ( I c , I * , D c , D a )  = ( O , O , & l , O ) ,  while the 2kF piece from 
( I c ,  I,, D,, D,) = (O ,O,  fl, yl) and (O,O,O, fl). The non-oscillating part is due 
to the lowest particle-hole excitation. We thus find 

ac = 2E,(Q)a a, = 1 + oc /4 .  (3.18) 

Notice that both the holon and spinon excitations are responsible for the 2kF os- 
cillation part. On the other hand the 4kF piece is dominated by the holon exci- 
tation alone. The Same observation holds for the Hubbard model [10-12] and thc 
Tomonaga-Luttinger model [3]. The spin correlation function x(r,O) has the same 
form as (3.17) except that the 4kF part is absent. The critical exponent for the 2kF 
part is equal to os of the charge density correlation. 

1.2 

1 
0 0.25 0.5 

Figure cc1'4r51 1. Thedressed chargc &(Q) of the holon as F@m 2 The charge density U 4 k ~  aponenl ols an 

a function of the electron concentration Y (U = $ 
for M-Blling). 

a [unction of U. 

The dressed charge E, (Q)  of the holon is shown in figure 1, where U = n2/2 
and U = 4 mrresponds to the half-filled band. The 4kF exponent ac then behaves 
as depicted in figure 2 Near half-filling we obtain a, - 2 + 8( - v )  as shown 
in appendix B. Note that in the low-density l i t  a, = 4, Le. the value for the 
non-interacting model. 

The long-distance behaviour of the electron correlation function is governed by 
the excitation specified by ( I c , I , , D c , D s )  = (l,l,O,*$). We thus obtain 

G,(r,O) - r-'I cos(kFr) r) = (a, + 4)2/(16a,). (3.19) 
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G,(r,O) follows the same behaviour, hut with the excitation ( l , O , * i , ~ $ ) .  Conse- 
quently the momentum distn%ution function close to kF has the form 

(3.20) (nk)  = (nkJ -constant Ik - kFle6gn(k - kF)  

which is the typical power-law singularity of the Luttinger liquid [3] and we find 

e = 7 - 1 = (a, - 4 ) 2 / ( m a , ) .  (3.21) 

From figure 3 we see that as Y deviates from half-tilling 0 decreases monotonically 
from to WID, and hence the momentum distribution in the lowdensity regime 
exhibits an abrupt change around kF. 

Figure 3. The exponent e for the momentum dis- 
tribution as a function of U. 

Figom 4. The superconducting “elation expo- 
nents as a function of U. p. and p, are for the 
singlet and triplet pair, respectively. 

We now turn to the superconducting correlation functions. The excitations rele- 
vant to the singlet and triplet pair correlations are specified by ( I c ,  I , ,  D,, D,) = 
(2 ,1 , f$ ,O)  and ( 2 , 2 , 0 , 0 ) ,  respectively. We then obtain for the singlet pair 

Ps(r,O) - r-ps COS(Z~,T) 0, = 4/a, + a,/4. (3.22) 

The triplet pair has the leading uniform term 

P,(r,O)-r-@* p , = 1 t 4 / a C .  (3.23) 

Notice that the singlet pair correlation also has the uniform piece with the same 
exponent p,. The exponens ps and p, are plotted in figure 4, from which we 
observe that the superconducting correlations get more enhanced as holes are doped 
into the half-filled band 19,311. It is interesting to notice that even in the t-3 model 
the superconducting correlations never overwhelm the spin correlation since p, and 
0. are always larger than ma for arbitraly electron filling. 

3.2 Magnetic field dependence 

Let us investigate how the correlation exponents behave when we turn on the external 
magnetic field. For simplicity we consider two typical cases: just at half-filling and near 
half-filling, on the basis of which we will be able to clarify the essential properties of 
the field dependence. At half-filling there is no massless excitation associated with the 
charge fluctuation since the strong correlation effect opens the very large Hubhard 
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Figure 5. The 2Cp exponent ea in the spin mrreblor as a function of H at half-6lling. 

gap. The spin excitation remains massless, which can be described by the e = 1 
SU(2) Kac-Moody theory. The long-distance behaviour of the spin conelator is thus 
equivalent to that for the antiferromagnetic Heisenberg model in [32] 

x(r,O) - M Z  + B,r-' + B,r-a* cos(21cF,r) (3.24) 

where A4 is the magnetization. We plot in figure 5 the magnetic Beld dependence of 
the 2kF spin exponent a, = 2Ca(B)', where E,(B) is given in (3.26) below. 

In the metallic phase away from half-filling, the holon becomes massless as in zero 
field. An essential difference from zero-field case is that the holon is no longer treated 
as a spinless hole because it acquires the effective spin induced by the magnetic field. 
Similarly the spinon may get electrically charged. 

These effective spin and charge are computed by creating the holon and spinon 
excitations in magnetic fields (331. We then observe that they are nothing but the 
elements of the dressed charge matrix introduced in section 2. The physical meaning 
of each element is that Z,, and (a  - Zsc) are the effective charge and spin of the 
holon, and Z,, and Z,, are the effective spin and charge of the spinon. Approaching 
half-filliog (Q + 0).  the effective charge of the holon is independent of field and 
becomes unity. The spinon is not charged even in the metallic phase, i.e. Z,, = 0. 
Furthermore the field dependence of the effective spin of the spinon is given by that 
for the Heisenberg model (fflrresponding to half-filling). The dressed charge matrix 
thus turns out to be 

where & ( B )  is equal to the dressed charge (or effective spin) for the spin-; Heisen- 
berg chain obeying 

with the kernel R(r) given in (3.15) and the effective spin of the holon is 

(3.26) 

dlcsech(ak)C,(k). 
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For comparison let us quote the zero-field dressed charge matrix near half-filing 

It is not difficult to verify (3.25) from (2.38) if one applies Fourier transform. The 
field dependence of ( , ( B )  and s h ( B )  are depicted in figures 6 and 7, respectively. 
We note in figures 5 and 6 that the weak-field behaviour of a, and exhibit the 
logarithmic singularity whose origin is the same as for the spin suscephiility of the 
Heisenberg chain [12,34]. 

Sh 

0.2 L4 0.1 0 2 H  4 

Figure 6. The dressed charge Es(B) of !he spinon 
as a function of the external magnetic field H at 
and near half-filling. 

Flgum 7. The effective spin ah(B)  of the holon 
as a function of H near half-filling. 

We next discuss the field dependence of critical exponenB close to half-filling. The 
exponent of the 4kF( = 2kFt + 2kFl) oscillation piece in the charge correlator takes 
the value a, = 2 irrespective of magnetic fields owing to the fact that it is controlled 
by charge excitation alone. Since the charge density operator n(r)  = n,(r) t n l ( r )  
the 2k, part splits into two pieces with the momentum 2kFl and 2k,,, the exponents 
ofwhich are given by aSI = 2Z~a+2(1-Z,,)2 and a,, = 22:,+22&, respectively. 
Note that these exponents have the magnetiofield dependence only through the 
effective spins of the spinon and holon. The values of ( a s l , ~ 8 T )  are increased from (z,, $) to (4,2) as the field increases. 

The singlet pairing exponent has the form 

2 5 1 1 - 2 2 , ,  P . = - t -  
2 2 (  z,, ) 

while the triplet one reads 

(3.29) 

(3.30) 

With the increase of the magnetic field, the values of (Ps,& ) are monotonically in- 
creased from ($, 3) to (3,4),  respectively. Therefore the superconducting correlation 
is suppressed in the presence of the magnetic field, as might be expected. 
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The Luttinger anomaly exponent for the momentum distribution is given by 

- 1 + ziC + z:, + (’ - is:)] 
- 1 + ( 1 - Z , , ) 2 t Z ~ 8 t  (E::>’] - 

for IcFt 

for kF1 ’ 

(331) 

1 -  2 

Both of the exponenn Bt,, increase up to 4 with the increase of magnetic fields. The 
momentum distribution around the Fermi momentum is therefore smoothed by the 
magnetic field. 

We mention that Ogata el nl analysed numerical data on the magnetic field 
dependence in the U -t 00 limit of the Hubbard model 1351 comparing with the 
analytic result obtained by Frahm and Korepin [12]. Our present results for the 
magnetic field effect in the t-J model are essentially the same as theirs in the metallic 
system very close to half-filling. It is worth noting that in this regime the effective 
spin of the holon defined here is nothing but the magnetization M (222) of the 
system. The magnetization in this limit is of course equal to that in the Heisenberg 
model calculated by Grimths [34]. We point out, however, that this relation holds 
only for highly correlated systems. In generic cases they are not equivalent. This will 
be seen explicitly in subsection 4.1, where the effect of the finite Coulomb interaction 
is discussed using the Hubbard model. 

4. Luttinger liquid properties 

According to Haldane, the idea of Luttinger liquids applies to the low-energy excita- 
tions in a variety of ID metallic systems [1,2]. His demonstration is mainly based on 
the systems mntaining the one-mmponent massless excitation, such as the Heisen- 
berg model, the bose gas model etc. The low-energy spectrum of Luttinger liquids 
contains the three specual parameters, U,, uJ and uN. These are all velocities asso- 
ciated with the excitations of particle-hole pairs (uF), of the 2kF momentum transfer 
(uJ) ,  and of the particle number change (uN) .  Here uF is the usual sound velocity. 
The crucial point is that these velocities are not mutually independent but connected 
through the universal relation U, = (uJuN)’IZ.  Hence one can write 

uJ = exp(z+)uF uN = exp(-211t)ur ( 4 4  

where the parameter exp(2$) is non-universal and depends on the details of the 
interactions of underlying microscopic models. All the correlation exponenn are 
essentially determined by this parameter. In short, what Haldane claims is that the 
low-energy massless excitations in ID metallic systems are all solved by the procedure 
of bosonization. 

In the l-J model, as we have seen, there exist two massless degrees of freedom, 
the holon and spinon. These excitations are demupled and described by two inde- 
pendent c = 1 conformal theories, i.e. Gaussian theories. Thus the low-energy action 
reads 
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where freebosonfields are periodic +=(t,z) = +,(1,2+27r)+27rNURu with Nu E 
Z / 2 .  The conformal weights (3.16) are characteristic of the Gaussian theory [%I. 
For the charge sector, therefore, the field periodicity R, is parametrized as f i R c  = 
C J Q ) - l ,  Le. it depends continuously on the electron concentration. The spin sector 
has the periodicity f i R ,  = Z,, = 1/fi for any electron density. This implies 
that the spin sector is described by the level-1 SU(2) Kac-Moody theory just l i e  the 
spin-? antiferromagnetic Heisenberg chain [13]. It is also instructive to compare the 
formula (3.1) for the energy gaps 2nv,(A,+ + A ; ) / N  with Hddane’s result (see 
equation (6) of [Z]). The are in fact equivalent under the identification e@ = E,( Q )  
(or e9 = Z,, = I /  sy 2) for the charge (or spin) sector. In the presence of the 
magnetic field the quantity e@ is generalized to the dressed charge ma& Hence the 
critical properties of the t-J model nicely lit in with the Luttinger liquid picture. 

In comparison with the Fermi liquid theory the most striking feature of the 
Luttinger liquid is the p e r - l a w  singularity of the momentum distribution function 
(3.20) near k = kF. This reflects the fact that the low-energy excitation is not of 
the quasiparticle type, but of the collective type. The power-law anomaly (in view 
of the Fermi liquid theory) was first discovered in the Tomonaga-Luttinger model 
which essentially describes a weakly correlated electron system [37-391. As for highly 
correlated systems this behaviour has been established only recently in the repulsive 
Hubbard model [6,8,10-12,401. We now have shown that the same conclusion holds 
for the t-J model. 

In order for these systems to be classified as Luttinger liquids it has been crucial 
that the charge and spin degrees of freedom are separated and described by two 
independent e = 1 conformal field theories. Universal scaling relations (3.18), (3.21) 
and (3.23) are then valid for these metallic models. Each exponent, howevq depends 
on the non-univesal microscopic property of the theory due to the existence of the 
marginal operator. To clarify this point we would like to compare the 1-J model with 
the repulsie Hubbard model in the next subsection. 

4.1. Compahon with the Hubbard model 
The 1~ Hubbard chain describes a system of itinerant electrons feeling the on-site 
Coulomb repulsion U. The Hamiltonian takes the form 

U > 0 .  (4.3) 

As mentioned before, in the strong correlation limit (U B t) the model reduces to 
the t-J model in the region J 2 t 2 / U  A: 2. 

The finite-size corrections in the Hubbard model have been analysed by Woy- 
narovich [B]. For vanishing magnetic field the critical exponents as, 8, os and 
are all expressed in terms of a, just through the same scaling relations (3.18) and 
(3.21)-(3.23) as in the 1-J model [10-12]. The 4k, osdlation exponent a, is de- 
termined through a, = ~ V , ( Q ) ~ ,  where the dressed charge function q,(k) of the 
holon is the solution to the integral equation [11,12] 

x = -t C(c!uci+lo + cf+,,ci,) + U Cnif nil 
i,s i 

Q 

-8 
. ~ , ( k )  = 1 + I  dk’cos(k‘)G(sink-sink’)Tc(k’) (4.4) 

with the kernel being 
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Here the Fermi level Q is fixed by the electron concentration. 
In figure 8 we show the exponent e,. Strong dependence of a, on the Coulomb 

interaction as well as the electron filling is clearly observed. As U -f CO, a, ap- 
proaches 2 in agreement with the result for the spinless fermion. In the opposite 
Limit U + 0, ac converges to 4 for the electron concentration 0 < U < $, which 
is consistent with the result of the Tomonaga-Luttinger model. It should be noticed 
that a, takes the value close to 2 near half-filling as long as the Coulomb inter- 
action exists. Recall that at half-filling the Hubbard model is an insulator for all 
U # 0, since the Umklapp interaction becomes relevant, thereby the charge excita- 
tion possesses the gap. The gap formation strongly affects the properties of the charge 
excitation so that the holon behaves like the spinless fermion, resulting in the a, = 2 
near haE-filling. From ee one can evaluate the Luttinger anomaly exponent 0 for 
the momentum distribution and the superconducting correlation exponents through 
(3.21)-(3.23) [ 10-121. The results are plotted in figures 9 and 10. 

Let us compare the present result for the t-J model with the large-U behaviour 
of the Hubbard model. In the vicinity of the half-filled band the exponents of the t-J 
model take the values expected in the strong correlation limit of the Hubbard model, 
for instance a, = 2. This is because the exclusion of the double occupation gives 
the most dominant effect near half-filling, which makes the motion of doped holes 
behave like spinless fermions as in the Hubbard model. In the U -* CO Hubbard 
model, as U decreases from half-filling a, (= 2) stays constant, and hence 0 = for 
any filling [IO-12,41]. On the other hand, in the 1-J model the critical exponents 
take the values for the non-interacting system such as a, (= 4) in the low-density 
limit U - 0 .  

This non-interacting behaviour of the t-J model for U - 0 seems to be a bit 
peculiar since the model is originally supposed to describe a highly correlated system. 
Our result implies that the hole motion in the t-J model is not l i e  spinless fermions 
for large holedoping, but is considerably influenced by the spin fluctuation through 
the strong antiferromagnetic coupling J .  We think that the large antiferromagnetic 
coupling favours the antiparallel-spin electron pairs to sit on the nearest-neighbour 
sites, which renders the hole motion quite different from spinless particles. In the 
low-density limit this configuration will be so dominant that the exclusion of the 
double occupancy becomes less important. 

' h r i n g  to the superconducting correlations we see that the large spin coupling 
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F@re 9. The exponent 0 for the momentum dis- 
tribution as a function of  U in the Hubbard model. 
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Figure 10. The superconducting correlation ffpo- 
nenls as a function of U in the Hubbard model. 0, 
and 0, are for the singlet and triplet pair, r e s p  
tively. 

as well as the hole doping in the t-J model play a conspicuous role to enhance the 
superconducting correlation. This is not the case for the strong correlation limit of the 
Hubbard model. Thus the t-J model tends to stabilize the superconducting state. In 
spite of this fact, however, the spin correlation always dominates the superconducring 
correlations for arbitrary electron filling, as pointed out in section 3. 

Figure 11. The 2kp exponent a. in the spin correlator as a funclion of H in the 
Hubbard modcl at half-filling. 

Finally we discuss the magnetic field dependence.. In [ll, 121 the exponent a, for 
the 2kF oscillation piece in the spin correlator just at half-filling has been expressed 
as a, = 2q,(B)*, where q a ( B )  is the dressed charge explained below. We present 
the field dependence of a, in figure 11. In the vicinity of the half-filled band, the 
dressed charge matrices for zero and for non-zero field take the same form as (3.25) 
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and (3.28). The dressed charge function (or effective spin) qa of the spinon satisfies 
the integral equation (3.26) but with the kemel replaced by G(r) defined in (4.5). 
The effective spin ve( 23) of the spinon is plotted in figure 12 for several values of 
U / t .  We also depict the effective spin sh of the holon in figure 13. 

N Kawaknmi and Sung-El rOng 

Figure 12 The dressed charge (or effeaive spin) 
+(B) of lhc spinon as a funclion 01 H in the 
Hubbard model at and near half-Elling. 

Figure U. The effective spin ah(B)  of the holon 
as a funclion of H in the Hubbard model near 
half-filling (In this figure U l t  = 2 should read 
U/: = 4). 

All the critical exponents are obtained in terms of the effective spins of the spinon 
and holon. We shall refrain from giving explicit formulae since one can readily check 
the field dependence of exponents using the formulae given in subsection 3.2. 

Let us conclude this section by making a brief comment on the effective spin sh 
of the holon. For U / t  > 1 the sh curve closely follows the magnetization curve of 
the Heisenberg chain, as observed in the t-J model. This obsemtion is undersmod 
in the following way: In the strongly correlated regime near half-filling the spin state 
is almost degenerate, and hence all the band electrons contribute equally to the 
magnetization under non-zero field. Therefore making a hole in the ground-state 
A-distribution amounts to losing magnetization per lattice site. This in tum gives rise 
to the effective spin of the holon. Notice, however, that such a simple situation no 
longer holds as U / t  becomes small. Therefore it should be realized that the effective 
spin of the holon has a different field dependence from the magnetization generically. 

4.2. Relatwm to bulk quantiries 

Another interesting aspect of the Luttinger liquids is that the critical exponenh can 
be expressed in terms of the bulk quantities. This kind of relation between the 
bulk quantity and the dressed charge was first noticed in [1,32]. We consider the 
three typical bulk quantities, the spin susceptibility xs. the compressibility x, and the 
speciRc heat coefficient y, in the t-J model. 

As shown in appendix B, the compressibffty and the spin susceptibility are ob- 
tained as 
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The low-temperature expansion of the free energy gives 

which corresponds to two c = 1 conformal theories [30]. We thus find 

aC = 4 2 ~ 2 4  - (4.8) 
where we have renormalid the bulk quantities so that 4 = g7.. = cc = 1 in the 
non-interacting limit. Note that this formula is also valid for the Hubbard model [lo- 
121. In the band bottom all these bulk quantities exhibit the divergent behaviour due 
to the dispersion relation in 1D electron systems. Approaching half-filling x. remains 
finite (a constant value of the Heisenberg model), while xc diverges as 

( $  - u)-l 8(1112)~ 
xc = 3%2C(3) (4-9) 

due to the diverging density of states (see appendix B) [42], where C is the Riemann 
zeta functior Since y is also divergent like ($  - u)-l we have - 22, /7  for 

Let us next discuss an important role played by boundary conditions. Imposing 
twisted boundary conditions on the Bethe wavefunction does not ruin the exact inte- 
grability by virtue of the U(1) symmetry of the system. Shastry and Sutherland then 
noticed that this was an efficient way to evaluate the effective current-cartying mass 
(transport mass) 1431. Under twisted boundary conditions with the twisting phase 4 
the shift of the ground-state energy from the periodic case (+=O) is 

(4.10) 

The interesting point is that the charge stiffness Dc is directly related to the DC part 
of the conductivity U ( W )  

U+$. 

Eo(+) - EdO) = DD,4'/N + O(44). 

2re2 
h 

Reu(w) = -DC6(hw).  (4.11) 

For free electrons the coefficient of 6 ( h )  is proportional to m-l with m being the 
electron mass. Therefore it is legitimate to define the effective mass m' through 
m*/m 0: D;I 1431. In view of conformal theories the energy shift due to twisted 
boundary conditions by 4 is attributed to the excitation I ,  = I ,  = D, = 0 and 
D, = 412% 1121. From (3.1), (3.16) and (4.6)-(4.8) one can easily express the 
enhancement factor of the currentcarrying mass in terms of the bulk quantities [44] 

(4.12) 

Then, for instance, in the t-J model near half-filling the effective mass is extremely 
enhanced as 

m*/m = (24 - C 8 ) ' / g c .  

8(1112)~ 
m*/m - - 3 C ( 3 )  ($  - (4.13) 

which corresponds to the fact that the system approaches the insulating phase. 
'Ib conclude this section we emphasize that formulae (4.8) and (4.12) are valid for 

any ID correlated electron system, and hence characterize the universal properties of 
Luttinger liquids. 



6004 

5. Conclusions 

In this paper the long-distance properties of the t-J model at t = J for arbitrary 
electron filling have been studied using the Bethe umuu solution and the finite-size 
scaling method in conformal theory. The results are compared with the repulsive 
Hubbard model in detail. Starting with microscopic models we have shown explicitly 
that the electron behaviour in these highly correlated systems is characterized as the 
Luttinger liquid. The separation of the charge and spin degrees of freedom is quite 
essential. Consequently the charge sector is described by the Gaussian theory and 
the spin sector by the c = 1 SU(2) current algebra. The dressed charge matrix 
introduced in the Bethe umuu calculation provides us with the precise link between 
the characteristic parameter of Luttinger liquids (i.e. Gaussian field periodicity) and 
the microscopic parameters in the theory. Notice that this is the most difficult step in a 
conventional bosonization approach. In conclusion we have presented the microscopic 
foundation of the concept of Luttinger liquids d la Haldane on the basis of conformal 
field theory and Bethe umurz solutions. 

N Kawukami and Sung-Kil Yang 
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Appendix A 

In this appendix we present our calculation of the finite-size corrections in section 2 
in such a way that it can be applied to generic nested Bethe umuu solutions. Let us 
start with the Bethe umulz equations 

('41) 

where N denotes the system size, N, is the number of 'particles' of the type a 
(= 1, . . . , 1 )  and &(A) are the bare momenta. The phase shifts q5-@( A)  are assumed 
to obey q 5 , p ( X )  = +@,(A) = -+,@(-A). We consider the case in which the 
quantum numbers IF belong to the interval [ I $ ,  I ; ]  so that 

I ; - I ; = N ,  I ~ + I ~ = Z D , .  ('w 
Define 
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For N + 00 with N , / N  = U, and D , / N  = 6, being fixed, the rapidity distniution 
functions satisfy 

where .,(A) = &!(A) and KOp(X) = + L R ( X ) .  Then, for .,(A) = 
limN-= z ~ , ~ ( X ) ,  we have 

Let us first calculate 

Introducing the dressed charge functions 

we obtain 

where the vertical bar is meant to put q$ = f q ,  
Z is given by ZOp = tog(q@) .  

We next calculate 

After some manipulations we get 

In a similar way one can show that 

We thus find in matrix notation that 

the ge matrix 
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where (pdq*), = p,(q,)dq$(du), =due and (d6), = d6,. 

N Kawakami and SungEl Yang 

We are now ready to express the finite-size corrections in the energy 

in terms of the matrix 2. Let us define the dressed energy functions 

with the condition 

.,(g:l$)=O. 

This condition ensures the stationary condition 

Another basic relations are 

where U, are the Fermi velocities. 

(A18) we finally obtain 
Expanding E($) to second order in dq? = q? q, and substituting (A13) and 

(A191 e ( q * )  = E ( j T q )  + 2,( z(dv) ' (Z- ' ) 'VZ- ldu 1 + (d6)'ZVZLd6) 

where VaB = ~ ~ 6 , ~ .  Note that d6, = D , / N  and duo = N,/N - U: where U: is 
the value for the ground state. Hence ~ ( p * )  - '(fq) is of order N-'. 

Appendix B 

We express the compressibility x, = an!/+ in terms of the dressed charge [JQ) 
in (3.14). First notice the chain rule 

For zero magnetic field (B -+ +CO) the rapidity distribution in the ground state 
satisfies 

0 

-Q 
p , (A)=  R ( A ) + /  dA'R(A-A')pc(A'). (B2) 
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With the aid of an auxiliary function F(A1A’) obeying 

4 

-Q 
F(A1A’) = R(A - A‘) + J duR(A - u)F(ulA‘) (B3) 

we find from (3.14) and (B2) that 

9 
&(A) = 1 + / F(A1A‘) dA’ 

-Q 

It is now straightforward to show from (235) that 

The dressed energy function (2.33) for zero field obeys 

cc(A) = 2 + p - 2xR(A)  + dA’R(A - A’)E~(A’ ) .  (Jw 
This function is subject to the condition f , (&Q)  = 0, according to which we obtain 
[ , ( Q )  = - (aQ/ap)e: (Q) .  Using (B5) and (2.29) we thus verify the relation for 
xc in (4.6). The expression for the spin susceptibility xs = a M / a H  in (4.6) can be 
derived in a similar way by examining the asymptotic behaviour for B B 1. 

Let us now check (4.9). Approaching half-filling we have Q + 0 ,  and hence from 
(2.35) 

nz Y 1 - 2Qp,(0) .  (B7) 

Equation (B2) yields p,(O) Y R(0).  Thus Q Y (1 - n:)/ (2R(O)) .  The dressed 
charge behaves as E,( Q )  Y 1 + (1 - n:). Similarly it is seen from (B6) that E:( Q )  N 

-x(l- n:)R’’(O)/R(O). After all this we get 

Inserting R(0) = ( l / r ) h 2 ,  R”(0) = -(3/2s)C(3) with C being the Riemann 
zeta function, and U = n:/2 we obtain (4.9) in the text. 
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